Effect of alternative lipids and temperature on growth and growth factor gene expression in yellowtail kingfish (*Seriola lalandi*)

Geoffrey M. Collins, BTech Aquaculture
Biological Sciences
Flinders University, South Australia
i. Preface

This thesis has been written in manuscript format for the international journal Aquaculture. Formatting, including layout, section numbers, figures, tables and referencing style has been written in accordance with this journal’s guidelines for authors (see page 33).

We, the undersigned, hereby acknowledge that Honours student, Geoffrey M Collins, conducted this research project and wrote the following manuscript in fulfilment for the degree of Bachelor of Technology (Aquaculture), Honours, at Flinders University of South Australia.

Professor Andy Ball

Associate Professor Jian Qin

Dr. David Stone

Ms. Jenna Bowyer
ii. Declaration

I certify that this thesis does not contain, without acknowledgement, any previously submitted material for a degree or diploma at any university, and that to the best of my knowledge does not include any material previously published or written by another person where due reference is not made in the text.

Geoffrey M Collins

November 2010
Table of Contents

Abstract.. 5
Keywords... 6
1.1 Introduction.. 6
1.2 Materials and Method... 9
 1.2.1 Feeding Trials and Sample Storage... 10
 1.2.2 RNA isolation and cDNA synthesis.. 11
 1.2.3 RT-qPCR.. 12
 1.2.4 Normalisation and statistical analysis.. 13
1.3 Results.. 13
 1.3.1 Effect of alternative lipids on growth and gene expression................... 13
 1.3.2 Effect of temperature on growth and gene expression....................... 15
1.4 Discussion.. 16
1.5 Conclusion... 19
Acknowledgements... 21
References.. 22
Figure captions... 27
Figures.. 29
Table... 34
Guidelines for Authors.. 35
ABSTRACT

In this study the suitability of canola oil (CO) and poultry fat (PO) as alternatives to fish oil (FO) was assessed. Furthermore, a real-time RT-qPCR assay to detect hepatic insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding protein-1 (IGFBP-1) was developed. Four isoproteic (450 g kg\(^{-1}\)), isolipidic (250 g kg\(^{-1}\)) dry extruded diets were formulated to contain PO or CO at 50 or 100% inclusion, as a substitute for FO. Yellowtail kingfish growth and growth factor gene expression was compared with fish fed a diet containing 100% FO. Two experiments were conducted separately at optimal (22 °C; 33 d) and sub-optimal (18 °C; 34 d) temperatures with mean initial fish weights of 95.6 ± 0.1 g and 101 ± 0.1 g respectively. At 22 °C yellowtail kingfish fed the 50% PO diet grew significantly larger (281.2 ± 1.2 g) than individuals fed the 100% FO diet (266.9 ± 5.9 g). Inclusion of CO at 50% produced equivalent weight gain to the 100% FO diet, however, 100% inclusion of CO produced poor performance in both experiments. Trends in gene expression reflected the response in weight gain to alternative lipids. A positive relationship between hepatic IGF-I mRNA levels and weight gain and also hepatic IGFBP-1 mRNA and weight gain was found. A positive correlation between hepatic IGF-I and IGFBP-1 mRNA levels was also found. Irrespective of diet, fish grew larger at 22 °C than at 18 °C. The findings of this research indicate that improved diet formulations for yellowtail kingfish may be achieved through the inclusion of alternative lipid sources and that IGF-I mRNA may be used as a rapid indicator of growth in this species.
Keywords
yellowtail kingfish, alternative lipids, IGF-I, IGFBP-1, growth factor, temperature

1. Introduction

The yellowtail kingfish (*Seriola lalandi*; Valenciennes, 1833) is a marine, pelagic, carnivorous fish in the family Carangidae that occurs circumglobally in sub-tropical and temperate waters (PIRSA, 2002; Kolkovski and Sakakura, 2004). This species is considered to have excellent attributes for aquaculture including fast growth, good taste and market acceptance. Yellowtail kingfish and related sub-species are currently cultured in Australia, New Zealand, Japan, China, USA and Chile (Chai, et al., 2009). In Australia, established locations for the grow-out of yellowtail kingfish exist in the near-shore waters of the Spencer Gulf, South Australia, where commercial culture of this species has been undertaken since 1998. In the financial year of 2007/2008, 2 900 tonnes of yellowtail kingfish was produced in South Australian waters, compared with just 45 tonnes in 1999/2000 (Fowler, et al., 2003; Chai, et al., 2009).

The major lipid component in manufactured fish feeds (aquafeeds) has traditionally been fish oil which is derived from marine capture fisheries (Leaver, et al., 2008; Tacon and Metian, 2008). Marine capture fisheries are currently at their maximum sustainable limit with global production of around 90 million tonnes per annum in the last decade (Leaver, et al., 2008; FAO, 2009; Perón, et al., 2010). Partial and total replacement of fish oil (FO) by...
alternative sources has received major research focus over the past two decades as farmers seek to minimise production costs. Both terrestrial animal fats and plant oils have the economical and practical potential to substitute fish oil (Raso and Anderson, 2003; Benedito-Palos, et al., 2007; Lewis and Kohler, 2008). Canola oil (CO) and poultry fat (PO) are two alternatives to fish oil that have been successfully included in diets for a variety of species, including sunshine bass (Wonnacott, et al., 2004), Atlantic salmon (Higgs, et al., 2006; Deslauriers and Rideout, 2008), red seabream (Glencross, et al., 2003), Chinook salmon (Grant, et al., 2008; Huang, et al., 2008), Japanese seabass (Xue, et al., 2006), rainbow trout (Liu, et al., 2004), and Murray cod (Francis, et al., 2006; Francis, et al., 2009). In a recent study by Seno-O et al., (2008), the inclusion of olive oil at up to 100% was shown to have no negative effects on growth or proximate composition in the congeneric Japanese yellowtail (*Seriola quinqueradiata*) cultured for 40 days. Seno-O et al., (2008) also reported that replacement of dietary FO with olive oil prevented muscle discolouration post-mortem when fillets were stored at 4 °C.

Molecular tools are increasingly being utilised in the aquaculture industry to complement existing husbandry techniques and improve production by providing insight into responses to altered environmental conditions (Cancela, et al., 2010; Panserat and Kaushik, 2010). Potential commercial applications of this technology include genetic improvement through marker assisted selection and improved husbandry through understanding metabolic pathways involved in nutrition and reproduction (De-Santis and Jerry, 2007; Panserat and Kaushik, 2010). Additionally, recent advances in molecular techniques used to measure gene expression such as quantitative real-time RT-PCR
(RT-qPCR), may assist in reducing costs involved in lengthy feeding experiments, whereby a suitable gene may give rapid indication of fish performance in as little as two weeks (Pérez-Sánchez and Bail, 1999; Cruz, et al., 2006; Picha, et al., 2008). Therefore, the use of molecular technology will shorten the time taken to evaluate the efficacy of diets for commercial application.

Growth pathways appear to be highly conserved in vertebrate evolution and genomic research into teleost fish has been aided by molecular studies involving terrestrial livestock (De-Santis and Jerry, 2007). Much of the genomic research involving terrestrial livestock has also focussed on genes that influence traits that are of equal interest in aquaculture such as growth rate, carcass yield, flesh quality and disease resistance (De-Santis and Jerry, 2007). A number of candidate genes have been identified as having potential for use as markers of somatic growth in teleost fish, including components of the somatotropic axis, myogenic regulatory factors and the transforming growth factor superfamily (De-Santis and Jerry, 2007; Panserat and Kaushik, 2010). The somatotropic axis hormone system, which includes growth hormone (GH), insulin-like growth factors-I and -II (IGF-I and IGF-II) and their respective receptors and binding proteins, exerts a profound effect on metabolism and development (Duan, 1997; Duan, 1998; Wood, et al., 2005).

The liver is the primary site of IGF-I production (Duan, 1998; Caelers, et al., 2004), although a number of other tissues including the heart, kidneys and muscle produce IGF-I locally, where the mature IGF-I ligand acts in an autocrine/paracrine manner (Duan, 1998; Moriyama, et al., 2000). The availability of IGF-I is regulated by IGF binding proteins (IGFBP’s) which

8
prevent their destruction by proteolytic degradation and prevent IGF-I from binding to cell-surface receptors (Duan and Xu, 2005; Wood, et al., 2005; Bower, et al., 2008). Over 99% of circulating IGF-I is bound to IGFBP’s in salmonids and the specific role that these peptides play in regulating IGF-I is yet to be fully elucidated (Reinecke, et al., 2005).

Both IGF-I and IGFBP-1 have been positively correlated with growth in nutritional studies involving teleost fish (Moriyama, et al., 2000; Dyer, et al., 2004; Cruz, et al., 2006; Picha, et al., 2008). The aims of this project were to: (1) evaluate the growth performance of yellowtail kingfish fed on diets partially or completely composed of alternative lipid sources, (2) develop a sensitive RT-qPCR assay for the detection of genes associated with somatic growth in yellowtail kingfish and (3) evaluate the potential of these genes as rapid indicators of growth in this species. This study tested the hypothesis that dietary compounds can alter gene expression in regulating fish growth performance. Specifically, the focus of this study was on the expression of genes involved in somatic growth in response to changing dietary compounds.

2. Materials and Methods

Two separate feeding trials were conducted at the South Australian Research and Development Institute (SARDI) Aquatic Sciences Centre, West Beach, South Australia (34°57.2’S, 138°30.4’E). A total of 233 juvenile yellowtail kingfish were used for each study. Yellowtail kingfish used in the high (22°C) and low (18°C) temperature experiments were the same cohort of fish and originated from CleanSeas Tuna Ltd., Arno Bay, South Australia.
Prior to stocking in experimental tanks fish were maintained in 5,000 L fibreglass tanks under ambient temperature and photoperiod and were fed a commercial pelleted feed (Ridley’s Aquafeeds; 450 g kg\(^{-1}\) crude protein, 200 g kg\(^{-1}\) crude lipid). The two experiments were conducted separately in March/April (22 °C) and August/September (18 °C).

2.1 Diets, Feeding Trials and Sample Storage

Each of the experimental diets was formulated and manufactured at the SARDI Australasian Experimental Stockfeed Extrusion Centre (AESEC), Roseworthy, South Australia. Diets consisted of 250 g kg\(^{-1}\) crude lipid, 450 g kg\(^{-1}\) crude protein and 24 MJ kg\(^{-1}\) gross energy. Approximately 50 g kg\(^{-1}\) of the lipid component of the diet consisted of residual fish oil from the fish meal used for the protein component. The remaining 200 g kg\(^{-1}\) of lipid in the diets was manipulated to formulate five different dry, extruded diets: 100% fish oil (FO; control diet), 50% poultry fat and 50% fish oil (50% PO), 100% poultry fat (100% PO), 50% refined canola oil and 50% fish oil (50% CO) and 100% refined canola oil (100% CO). Prior to stocking in experimental systems a sub-sample of fish (n=9) were weighed and measured and liver samples taken and stored in RNAlater (Ambion, Applied Biosystems, Foster City, CA, USA). These samples were labelled Time 0 and were taken to compare gene expression with fish fed different diets at the completion of each experiment.

Yellowtail kingfish juveniles (95.6 ± 0.1 g [22 °C] and 101.1 ± 0.1 g [18 °C]) were stocked at random into 15 × 700 L fibreglass tanks (n=14 fish tank\(^{-1}\)). Experimental tanks were situated in a temperature and photoperiod (14h light :
controlled room. For the duration of the experiments, animals were hand-fed to apparent satiation twice daily for 34 d (22 °C) and 33 d (18 °C) at 0900 and 1530 h.

At the completion of the feeding trials, three fish from each tank were removed and immediately euthanased by a spike to the brain. Duplicate liver samples were obtained from each of the three fish and placed in four volumes of RNAlater. Samples were then stored at -20 °C until analysis in the laboratory.

Weight gain (g) was assessed by group means (n=3) after weighing fish to the nearest 0.1 g. Hepatosomatic index (HSI) was calculated as liver weight (g) / total weight (g) × 100.

2.2 RNA isolation and cDNA synthesis

Total RNA was extracted from 50 mg of liver sample. Samples were homogenised for approximately 20 s using a tissue homogeniser (Multipro 395; Dremel Corporation, Racine, WI) into 300 μL of TRIzol (Invitrogen, Newcastle, NSW, Australia) according to the manufacturer's instructions. Additionally, 16 samples from the higher temperature experiment (22 °C) were extracted using RNeasy mini-kit (QIAGEN, Hilden, Germany) according to the manufacturer’s instructions. All RNA was re-suspended in 200 μL RNase-free water. RNA quality and quantity was determined using a Nanodrop-8000 spectrophotometer (Nanodrop Technologies) and denaturing gel electrophoresis. RNA used for cDNA synthesis was treated with RNase-free DNase (Promega, Madison, WI, USA) to remove any genomic DNA.
contamination in 12 μL reactions using 2 U DNase, 1 × DNase buffer and 2 μg RNA. First-strand cDNA was synthesised from 1 μg total RNA in 30 μL reactions containing 60 U M-MLV reverse transcriptase (RT; Promega), 1 × RT-buffer, 0.5 mM dNTPs, 250 ng oligo d(T)$_{15}$ primers and 250 ng random hexamers. Cycling conditions for reverse transcription were: 40°C for 10 min, 55°C for 50 min and 75°C for 15 min.

2.3 RT-qPCR

RT-qPCR was performed using an iQ5 qPCR thermocycler (Bio-Rad, Gladesville, NSW, Australia) with SYBR Green mastermix (Bio-Rad). Amplification of each sample was performed in triplicate in 96-well plates (Bio-Rad) with each individual reaction containing 2 μL template cDNA, 12.5 μL SYBR Green mastermix, 12.5 pmol each of sense and anti-sense primers and RNase-free water to a total volume of 25 μL. The sequences and source of primers are displayed in Table 1. Thermal cycling conditions for IGF-I and IGFBP-1 were identical to those described by Pedroso et al. (2009). Thermal cycling conditions for the reference gene (18S rRNA) were as follows: initial denaturation at 50 °C for 2 min followed by 35 cycles of 10 s at 95 °C, 30 s at 55 °C and 30 s at 72 °C. A temperature gradient from 55 °C to 95 °C and subsequent dissociation curve was used to confirm the specificity of each RT-qPCR. No template and minus reverse transcriptase controls were also run to confirm there were no contaminants present in reactions and to confirm the efficiency of the DNase reactions.
A serial dilution of cDNA was run for each set of primers to generate a standard curve. The amplification efficiency (E) of the RT-qPCR was calculated using the formula \(E = 10^{-1 / \text{slope}} \). Threshold cycle (Ct) values for both IGF-I and IGFBP-1 were normalised to 18S rRNA using the Q gene method (Simon, 2003). Statistical tests were performed using PASW v. 18.0.1 (SPSS Inc., Chicago, IL, USA). Final fish weight and HSI were analysed using a one-way ANOVA. After a natural logarithm transformation of normalised gene expression data from the higher temperature experiment (22 °C) and a cube-root transformation of normalised gene expression data from the lower temperature experiment (18 °C), all variables met the requirements for a one-way ANOVA. Significant ANOVA’s were followed by a posteriori Student Newman-Keuls test. Linear regression was used to assess the relationship between weight and hepatic gene expression. Pearson’s correlation coefficient was used to assess the relationship of IGF-I to IGFBP-1. Results were considered statistically significant at \(P \leq 0.05 \).

3. Results

3.1 Effect of alternative lipids on growth and gene expression

The inclusion of alternative lipids in diets had a significant effect on growth at both 22 °C and 18 °C (Figure 1, A and B; \(P < 0.05 \)). Fish fed the 50% PO diet at 22 °C obtained the highest weight, growing from 95.6 ± 0.01 g
to 281.2 ± 1.2 g in 30 d, compared with the 100% FO (266.9 ± 5.9 g; Figure 1A). The 100% CO diet resulted in significantly poorer growth at both 22 °C and 18 °C (Figure 1, A and B). Mortalities were negligible for the duration of both experiments.

Inclusion of alternative lipids also had a significant effect on mean HSI (data not shown). Fish fed on diets containing no added fish oil (100% PO and 100% CO) had significantly greater mean HSI at both 22 °C and 18 °C (P < 0.05; data not shown).

Expression of hepatic IGF-I in yellowtail kingfish at 22 °C showed an increasing trend in fish fed the 100% FO, 50% PO and 100% PO diets after 30 d when compared with Time 0 (Figure 2A; P = 0.16). Similarly for IGFBP-1 there was a trend towards increased expression in the 50%PO and 100% PO diets at 22 °C (Figure 3A; P = 0.42). However, no significant differences were found between treatments for either IGF-I or IGFBP-1 at 22 °C.

Hepatic IGF-I in fish cultured at 18 °C was significantly greater in fish fed the 100% FO and 50% CO diets compared with Time 0 (Figure 2B; P < 0.05). There was an increasing trend in expression of hepatic IGF-I in all experimental fish grown at 18 °C when compared with IGF-I expression at Time 0 (Figure 2B). Similarly, expression of hepatic IGFBP-1 showed a trend towards increasing in all dietary treatments compared with Time 0 at 18 °C. However, there were no significant differences between diets (Figure 3B; P = 0.12).

A positive linear relationship between expression of IGF-I and final weight (g) was found (Figure 4A; P < 0.05, r² = 0.514). Similarly, a positive linear relationship was found between IGFBP-1 and final weight (g) (Figure 4B;
A positive correlation was found between hepatic IGFBP-1 and IGF-I expression (Figure 5; \(P < 0.05, r^2 = 0.398 \)).

3.2 Effect of temperature on growth and gene expression

Irrespective of diet, fish grew larger at 22 °C than at 18 °C (Figure 1). Fish fed the 50% PO diet grew significantly larger than all other dietary treatments when cultured at 22 °C but not at 18 °C. HSI was lower for all dietary treatments at 18 °C than at 22 °C after 33 d and 34 d respectively (data not shown).

Temperature, while having a profound effect on growth also had an effect on hepatic gene expression. This was particularly evident in the 18°C trial, where hepatic gene expression for all dietary treatments was elevated compared to Time 0. Significant differences for hepatic IGF-I were found at 18 °C (\(p < 0.05 \)). Elevated IGF-I and IGFBP-1 expression for the 100% FO, 50% PO and 100% PO diets at 22 °C were observed (Figures 2A and 3A). Similar to weight gain at both 18 °C and 22 °C (Figure 1), hepatic IGF-I and IGFBP-1 for the 100% CO diet had the lowest expression levels of all the dietary treatments. Contrary to other trends in gene expression and growth, both IGF-I and IGFBP-1 were found to be more highly expressed at 18 °C than at 22 °C for the 50% CO diet.
The results obtained from this study indicate that up to 100% of added FO may be substituted with PO in diets for yellowtail kingfish without negatively affecting growth. Furthermore, growth was enhanced at 22 °C when 50% of the dietary lipid source was PO (Figure 1). Several other studies have also reported no negative effects on growth using partial or complete substitution of FO with plant or animal sources for marine, carnivorous fish, including the closely related Japanese yellowtail (Mugriditchian, et al., 1981; Raso and Anderson, 2003; Liu, et al., 2004; Wonnacott, et al., 2004; Higgs, et al., 2006; Xue, et al., 2006; Benedito-Palos, et al., 2007; Piedecausa, et al., 2007; Deslauriers and Rideout, 2008; Seno-O, et al., 2008; Salze, et al., 2010; Welch, et al., 2010). However, this is the first time that a positive effect on growth by partial substitution with an alternative lipid source (PO) has been reported for a marine, carnivorous teleost.

This study also demonstrates that up to 50% of included FO may be substituted with 50% refined CO without negatively affecting growth. At 100% inclusion, however, CO negatively affected growth at both 18 °C and 22 °C. Glencross et al., (2003) reported a negative effect on growth for total FO substitution with crude CO for red seabream (Pagrus auratus). However, total inclusion of refined CO in this species produced comparable weight gain to fish fed the 100% FO diet in this study. Huang et al., (2008) also report no negative effects on growth when refined CO was used to substitute fish oil for juvenile Chinook salmon (Oncorhynchus tschawytscha) at up to 72% of total dietary lipids. Therefore, while partial inclusion of refined CO produced
comparable growth to a FO diet for yellowtail kingfish, this species could not tolerate total inclusion of this lipid source.

Irrespective of diet fish grew larger at 22 °C than at 18 °C. Pirozzi and Booth, (2009), demonstrated that the optimal temperature for growth of yellowtail kingfish is close to 22 °C. Masumoto (2002) reports that below 17 °C, Japanese yellowtail reduce their feed intake, which results in reduced growth performance. The results obtained for gene expression and growth from this study demonstrate that temperature is a critical factor in the ability of fish to metabolise nutrients. The influence of temperature, therefore, needs to be taken into account when formulating practical diets for marine finfish.

It has been suggested that IGF-I is the most promising molecular marker to date as a rapid indicator of growth in teleost fish (Picha, et al., 2008). More recently, the use of RT-qPCR to detect IGF-I mRNA has taken precedence over previous technologies used, such as radioimmunoassay (RIA). The vast majority of research investigating hepatic IGF-I in relation to growth in cultured finfish has centred around studies on feed deprivation or feed restriction, rather than the manipulation of a selected dietary component such as protein or lipid (Picha, et al., 2006; Bower, et al., 2008; Hagen, et al., 2009). This may be due to a number of factors, including the expense and resources involved in formulating experimental diets and running large-scale, commercially relevant feeding trials. Nevertheless, the field of nutrigenomics in aquaculture is incorporating an increasing number of species and is assisting the aquafeed industry to achieve optimal dietary formulations through an improved understanding of nutrient metabolism.
Investigating the potential of IGF-I and IGFBP-1 to detect changes in growth using alternative lipids is a unique approach using a familiar and highly-studied growth pathway. The highest expression of hepatic IGF-I was found in fish fed the 50% PO diet at 22 °C. Although the result was not significant due to variations in individual fish, this trend reflects the mean final weight obtained for fish from this same treatment. This trend towards increasing gene expression at 22 °C was seen for 50% and 100% PO diets and for both IGF-I and IGFBP-1. Hepatic IGF-I and IGFBP-1 were least expressed in fish fed diets containing 100% CO at 22 °C, also reflecting trends in final weight gain. The effect of lipid source on hepatic IGF-I and IGFBP-1 production appears to be less pronounced than the effect seen in feed deprivation studies (Picha, et al., 2006; Terova, et al., 2007; Bower, et al., 2008; Hagen, et al., 2009; Pedroso, et al., 2009). Although the effect of lipid source on hepatic IGF-I production is subtle, this study has shown that there is a positive relationship between IGF-I and growth. The relationship between individual macro-nutrients and gene expression has recently been incorporated into an entirely new field of research entitled nutrigenomics. Future research on the influence of different macro-nutrients on components of the somatotropic axis hormone system may lead to the development of more effective dietary formulations for yellowtail kingfish. Linear regression revealed a positive relationship between both hepatic gene expression and weight gain in response to altered dietary lipid composition. Furthermore, we demonstrated a positive correlation between IGF-I and IGFBP-1. Cruz et al., (2006) demonstrated that hepatic IGF-I mRNA was significantly correlated with growth rate for Nile tilapia (*Oreochromis*...
nioticus) cultured at different temperatures and using different feeding regimes. Pedroso et al., (2009) also demonstrated that both IGF-I and IGFBP-1 mRNA levels were indicative of the nutritional status in the congeneric Japanese yellowtail. It can therefore be concluded that IGF-I and IGFBP-1 would be suitable molecular markers for giving a rapid indication of growth in nutritional studies involving yellowtail kingfish.

Future research in nutritional studies on yellowtail kingfish will help to further elucidate the subtle effects of macronutrients on genes involved in growth. With the decreasing price of sequencing, more sophisticated molecular tools such as microarray and sequence tag-based technology, which are already used in more established species such as salmonids, may soon become available to researchers investigating less established species, including yellowtail kingfish. The use of these technologies and validation with RT-qPCR will ultimately lead to a more thorough understanding of both the IGF system and of fish nutrition.

5. Conclusions

In conclusion, this study has demonstrated the efficacy of including PO and CO in extruded diets for yellowtail kingfish. When fed a diet containing 50% added PO at 22 °C, yellowtail kingfish grew significantly larger than fish fed the 100% FO diet, demonstrating that alternative lipids may enhance growth for a marine, carnivorous teleost. At 100% inclusion, CO produced poor performance at both 22 °C and 18 °C. Irrespective of diet, yellowtail kingfish grew larger at 22 °C than at 18 °C. Using linear regression, a positive
relationship between hepatic IGF-I and final weight was established, indicating that this gene would be a suitable molecular marker for rapid indication of growth in yellowtail kingfish.
Acknowledgements

I would like to firstly extend my deep appreciation to my principal supervisor Professor Andy Ball for his professional guidance and assistance at all stages of this project. My thanks also go to Associate Professor Jian Qin for his advice and input.

I would like to extend my deep appreciation to Dr. David Stone for his technical advice on fish husbandry and assistance with experimental design.

I would like to thank PhD candidate Jenna Bowyer for her continued guidance and assistance throughout the course of this project. Additionally, my thanks also go to technicians Darren Fisher and Claudio Giordano at SARDI for assisting to maintain the experimental system.

I would also like to thank Dr. Michael Michael at Flinders Medical Centre for his advice on molecular techniques. My thanks also go to the many members of the Ball lab at Flinders University for their patience and assistance.

I would like to thank the Australian Seafood CRC for funding this research project and industry partner CleanSeas Tuna Ltd. for supplying the fish used in both experiments. I would like to also thank Ridley’s Aquafeeds for their assistance with diet formulation. Also, my thanks go to Marine Innovations SA (MISA) and SARDI for providing the facilities to undertake this research.

My many thanks go to my family for their continued love and support.

And lastly, I would like to thank Dr Calida Neal for her technical assistance, endless patience, love and support.

Fowler, A., Ham, J., Jennings, P., 2003. Discriminating between cultured and wild yellowtail kingfish (Seriola lalandi) in South Australia. South Australian Research and Development Institute (Aquatic Sciences), Adelaide, Australia.

proteins as potential growth indicators in fish. N. Am. J. Aquacult. 70, 196-211.

Figure Captions

Figure 1: Mean initial (Time 0) and final weight of yellowtail kingfish fed 100% fish oil (FO) and fish oil replacement with 50% poultry fat (PO), 100% PO, 50% canola oil (CO) and 100% CO for 34 d at 22 °C (A) and 33 d at 18 °C (B). Values represent mean ± S.E.M (n=3). Significantly different values are labelled a, b and c (P < 0.05).

Figure 2: Mean initial (Time 0) and final IGF-I expression normalised to 18S rRNA of yellowtail kingfish fed 100% fish oil (FO) and fish oil replacement with 50% poultry fat (PO), 100% PO, 50% canola oil (CO) and 100% CO for 34 d at 22°C (A) and 33 d at 18 °C (B). Values represent mean ± S.E.M (n=3) and each sample was assayed in triplicate.

Figure 3: Mean initial (Time 0) and final IGFBP-1 expression normalised to 18S rRNA of yellowtail kingfish fed 100% fish oil (FO) and fish oil replacement with 50% poultry fat (PO), 100% PO, 50% canola oil (CO) and 100% CO for 34 d at 22°C (A) and 33 d at 18 °C (B). Values represent mean ± S.E.M (n=3) and each sample was assayed in triplicate.

Figure 4: Positive linear relationship between yellowtail kingfish weight (g) and IGF-I expression (A: $r^2 = 0.51$, $P < 0.05$) and IGFBP-1 expression (B: $r^2 = 0.40$, $P < 0.05$). Gene expression was normalised to 18S rRNA and each sample was assayed in triplicate. The equations of the linear regression are $y = 3 \times 10^{-5} x - 0.0015$ (A) and $y = 3 \times 10^{-5} x - 0.0020$ (B).
Figure 5: Positive linear relationship between IGFBP-1 and IGF-I expression in yellowtail kingfish fed alternative lipids twice daily to satiation ($r^2 = 0.67$, $P < 0.05$). Data is derived from means collected during both 22 °C and 18 °C trials. The equation of the line is $y = 0.8561x - 0.0004$.
Figures

Fig. 1A.

Fig. 1B.
FIG. 2A.

FIG. 2B.
FIG. 3A.

FIG. 3B.
y = 3E-05x - 0.0015
$R^2 = 0.517$

FIG. 4A.

$y = 3E-05x - 0.002$
$R^2 = 0.3938$

FIG. 4B.
\[y = 0.8561x - 0.0004 \]
\[R^2 = 0.6674 \]

FIG. 5.
Tables

Table 1: Forward (F) and reverse (R) primers used for real-time quantitative RT-PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer Sequence: 5' - 3'</th>
<th>Genbank Accession Number</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF-I F</td>
<td>GATGTCTTCAAGAGTGCGATGTG</td>
<td>AB439208</td>
<td>Pedroso et al. (2009)</td>
</tr>
<tr>
<td>IGF-I R</td>
<td>CCGTCGGAGTCAGGGTGAGG</td>
<td>AB439208</td>
<td>Pedroso et al. (2009)</td>
</tr>
<tr>
<td>IGFBP-1 F</td>
<td>CCCTTTGACCACCATGACACT</td>
<td>EU650626</td>
<td>Pedroso et al. (2009)</td>
</tr>
<tr>
<td>IGFBP-1 R</td>
<td>GGGTCCCTGTGTTTCCAGTTT</td>
<td>EU650626</td>
<td>Pedroso et al. (2009)</td>
</tr>
<tr>
<td>18S rRNA F</td>
<td>TACCCACATCCAAAGAAGGCA</td>
<td></td>
<td>Tom et al. (2004)</td>
</tr>
<tr>
<td>18S rRNA R</td>
<td>TCGATCCCGAGATCCAACTA</td>
<td></td>
<td>Tom et al. (2004)</td>
</tr>
</tbody>
</table>
Guide for Authors

Aquaculture

Types of paper

Original Research Papers should report the results of original research. The material should not have been previously published elsewhere, except in a preliminary form.

Review Articles can cover either narrow disciplinary subjects or broad issues requiring interdisciplinary discussion. They should provide objective critical evaluation of a defined subject. Reviews should not consist solely of a summary of published data. Evaluation of the quality of existing data, the status of knowledge, and the research required to advance knowledge of the subject are essential.

Short Communications are used to communicate results which represent a major breakthrough or startling new discovery and which should therefore be published quickly. They should not be used for preliminary results. Papers must contain sufficient data to establish that the research has achieved reliable and significant results.

Technical Papers should present new methods and procedures for either research methodology or culture-related techniques.

The Letters to the Editor section is intended to provide a forum for discussion of aquacultural science emanating from material published in the journal.

Contact details for submission

Papers for consideration should be submitted via the electronic submission system mentioned below to the appropriate Section Editor:

Nutrition:

D.M. Gatlin

The Nutrition Section welcomes high quality research papers presenting novel data as well as original reviews on various aspects of aquatic animal nutrition relevant to aquaculture. Manuscripts addressing the following areas of investigation are encouraged:

1) determination of dietary and metabolic requirements for various nutrients by representative aquatic species. Studies may include environmental/stress effects on animal’s physiological responses and requirements at different developmental stages;

2) evaluation of novel or established feedstuffs as well as feed processing and manufacturing procedures with digestibility and growth trials. Such studies should provide comprehensive specifications of the process or evaluated ingredients including nutrients, potential anti-nutrients, and contaminants;

3) comparison of nutrient bioavailability from various ingredients or product forms as well as metabolic kinetics of nutrients, food borne anti-nutrients or toxins;
4) identification of key components in natural diets that influence attractability, palatability, metabolism, growth reproduction and/or immunity of cultured organisms;

5) optimization of diet formulations and feeding practices;

6) characterization of the actions of hormones, cytokines and/or components in intracellular signalling pathway(s) that influence nutrient and/or energy utilization.

7) evaluation of diet supplementation strategies to influence animal performance, metabolism, health and/or flesh quality.

Manuscripts concerning other areas of nutrition using novel or advanced methods are also welcome. Please note that in regard to various diet additives such as probiotics, prebiotics, herbal extracts, etc., a very large number of papers have already been published. Therefore, Aquaculture will not continue to accept manuscripts that present initial and preliminary investigations of such additives. Manuscripts addressing these and other feed additives will be accepted for review only if they are of the highest scientific quality and they represent a significant advance in our knowledge of the mechanisms involved in their metabolism. Manuscripts may also be considered if they present clinical efficacy data generated in large-scale trials and economic cost-benefit analysis of these applications.

Aquaculture Production Science:

B. Costa-Pierce

AQUACULTURE PRODUCTION SCIENCE (PS) is one of 5 sections of the international journal AQUACULTURE dedicated to research on improvements and innovations in aquatic food production.

Aims and Scope for the PS Section are the: worldwide dissemination of the results of innovative, globally important, scientific research on production methods for aquatic foods from fish, crustaceans, molluscs, amphibians, and all types of aquatic plants. Improvement of production systems that results in greater efficiencies of resource usage in aquaculture. Effective applications of technologies and methods of aquaculture production for improved stocking regimes, the use of new species and species assemblages, and research on the efficient and sustainable usage of system space with the objective of minimizing resource usage in aquaculture. Investigations to minimize aquaculture wastes and improve water quality, technologies for nutrient recycling in aquaculture ecosystems, and the synergy of aquaculture and other food production systems using methods such as polyculture and integrated aquaculture.
Physiology and Endocrinology:
E.M. Donaldson

Diseases:
B. Austin

The Diseases Section welcomes high quality research papers presenting novel data as well as original reviews, on various aspect of the diseases of aquatic animals and plants, so long as their content is relevant to solving aquaculture problems.

Please note, however, with respect to the probiotic potential of various bacteria and the antibacterial or immunostimulatory effects of herbal extracts a very large number of papers have already been published. As a result, Aquaculture will not continue to accept manuscripts that present further initial and preliminary investigations of these phenomena. Manuscripts addressing these topics will be accepted for review only if they are of the highest scientific quality and they represent a significant advance in our knowledge of the mechanisms involved. Manuscripts may also be considered if they present clinical efficacy data generated in large-scale trials and economic cost-benefit analysis of these applications.

Genetics:
G. Hulata

The Genetics Section welcomes high-quality research papers presenting novel data, as well as critical reviews, on various aspects of selective breeding, genetics and genomics, so long as the content is relevant to solving aquaculture problems. Please note, however, that Aquaculture will not accept manuscripts dealing with the application of well-described techniques to yet another species, unless the application solves a biological problem important to aquaculture production. Aquaculture will not accept manuscripts dealing with gene cloning, characterizing of microsatellites, species identification using molecular markers, EST papers with small collections, or mapping papers with a small number of markers, unless the papers also deal with solving a biological problem that is relevant to aquaculture production. Where appropriate, linkage maps should include co-dominant markers, such as microsatellite DNA and SNP markers, to enable application to other populations and facilitate comparative mapping. Aquaculture will not accept manuscripts focusing mainly on population genetics studies that are based on RAPD and AFLP markers, since the dominance and multilocus nature of the fingerprints are not suitable for making inferences about population genetic diversity and structure. There may be other journals that are more suitable for manuscripts not meeting these requirements.

Page charges

This journal has no page charges.
Ethics in Publishing

For information on Ethics in Publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/ethicalguidelines.

Policy and ethics

The work described in your article must have been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for animal experiments http://europa.eu.int/scadplus/leg/en/s23000.htm; Uniform Requirements for manuscripts submitted to Biomedical journals http://www.nejm.org/general/text/requirements/1.htm. This must be stated at an appropriate point in the article.

Conflict of interest

All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within three years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work. See also http://www.elsevier.com/conflictsofinterest.

Submission declaration and verification

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection software iThenticate. See also http://www.elsevier.com/editors/plagdetect.

Contributors

Each author is required to declare his or her individual contribution to the article: all authors must have materially participated in the research and/or article preparation, so roles for all authors should be described. The statement that all authors have approved the final article should be true and included in the disclosure.

Copyright

Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (for more information on this and copyright see http://www.elsevier.com/copyright). Acceptance of the agreement will ensure
the widest possible dissemination of information. An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a ‘Journal Publishing Agreement’ form or a link to the online version of this agreement.

Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations (please consult http://www.elsevier.com/permissions). If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has pre-printed forms for use by authors in these cases: please consult http://www.elsevier.com/permissions.

Retained author rights

As an author you (or your employer or institution) retain certain rights; for details you are referred to: http://www.elsevier.com/authorsrights.

Role of the funding source

You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication. If the funding source(s) had no such involvement then this should be stated. Please see http://www.elsevier.com/funding.

Funding body agreements and policies

Elsevier has established agreements and developed policies to allow authors whose articles appear in journals published by Elsevier, to comply with potential manuscript archiving requirements as specified as conditions of their grant awards. To learn more about existing agreements and policies please visit http://www.elsevier.com/fundingbodies.

Language and language services

Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who require information about language editing and copyediting services pre- and post-submission please visit http://webshop.elsevier.com/languagediting/ or our customer support site at http://support.elsevier.com for more information.

Submission

Submission to this journal proceeds totally online and you will be guided stepwise through the creation and uploading of your files. The system automatically converts source files to a single PDF file of the article, which is used in the peer-review process. Please note that even though manuscript
source files are converted to PDF files at submission for the review process, these source files are needed for further processing after acceptance. All correspondence, including notification of the Editor's decision and requests for revision, takes place by e-mail removing the need for a paper trail.

Authors should avoid responding to messages received from the system using the 'Reply' button on their e-mail message; this will send the message to the system support and not to the editorial office, and will create unnecessary load of sorting out and forwarding.

Please submit your article via http://ees.elsevier.com/aqua/

Referees

Please submit, with the manuscript, the names, addresses and e-mail addresses of 3 potential referees. Note that the editor retains the sole right to decide whether or not the suggested reviewers are used.

Preparation

Use of word-processing software

It is important that the file be saved in the native format of the word processor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the word processor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. Do not embed "graphically designed" equations or tables, but prepare these using the word processor's facility. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: http://www.elsevier.com/guidepublication). Do not import the figures into the text file but, instead, indicate their approximate locations directly in the electronic text and on the manuscript. See also the section on Electronic illustrations.

To avoid unnecessary errors you are strongly advised to use the "spell-check" and "grammar-check" functions of your word processor.

LaTeX

If the LaTeX file is suitable, proofs will be produced without rekeying the text. The article should preferably be written using Elsevier's document class "elsarticle", or alternatively any of the other recognized classes and formats supported in Elsevier's electronic submissions system, for further information see http://www.elsevier.com/wps/find/authorsview.authors/latex-ees-supported.

The Elsevier "elsarticle" LaTeX style file package (including detailed instructions for LaTeX preparation) can be obtained from the Quickguide:
http://www.elsevier.com/latex. It consists of the file: elsarticle.cls, complete
user documentation for the class file, bibliographic style files in various styles,
and template files for a quick start.

Article structure

Subdivision - numbered sections
Divide your article into clearly defined and numbered sections. Subsections
should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not
included in section numbering). Use this numbering also for internal cross-
referencing: do not just refer to "the text". Any subsection may be given a brief
heading. Each heading should appear on its own separate line.

Introduction
State the objectives of the work and provide an adequate background,
avoiding a detailed literature survey or a summary of the results.

Material and methods
Provide sufficient detail to allow the work to be reproduced. Methods already
published should be indicated by a reference: only relevant modifications
should be described.

Theory/calculation
A Theory section should extend, not repeat, the background to the article
already dealt with in the Introduction and lay the foundation for further work. In
contrast, a Calculation section represents a practical development from a
theoretical basis.

Results
Results should be clear and concise.

Discussion
This should explore the significance of the results of the work, not repeat them.
A combined Results and Discussion section is often appropriate. Avoid
extensive citations and discussion of published literature.

Conclusions
The main conclusions of the study may be presented in a short Conclusions
section, which may stand alone or form a subsection of a Discussion or
Results and Discussion section.

Appendices
If there is more than one appendix, they should be identified as A, B, etc.
Formulae and equations in appendices should be given separate numbering:
Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on.
Similarly for tables and figures: Table A.1; Fig. A.1, etc.
Essential title page information

- **Title.** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.

- **Author names and affiliations.** Where the family name may be ambiguous (e.g., a double name), please indicate this clearly. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name, and, if available, the e-mail address of each author.

- **Corresponding author.** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that telephone and fax numbers (with country and area code) are provided in addition to the e-mail address and the complete postal address.

- **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a "Present address" (or "Permanent address") may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Abstract

A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.

The abstract should be not longer than 400 words.

Keywords

Immediately after the abstract, provide a maximum of 4-6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, "and", "of"). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations

Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.
Acknowledgements

Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Nomenclature and units

Follow internationally accepted rules and conventions: use the international system of units (SI). If other quantities are mentioned, give their equivalent in SI. You are urged to consult IUPAC: Nomenclature of Organic Chemistry: http://www.iupac.org/ for further information.

1. Authors and editors are, by general agreement, obliged to accept the rules governing biological nomenclature, as laid down in the International Code of Botanical Nomenclature, the International Code of Nomenclature of Bacteria, and the International Code of Zoological Nomenclature.

2. All biota (crops, plants, insects, birds, mammals, etc.) should be identified by their scientific names when the English term is first used, with the exception of common domestic animals.

3. All biocides and other organic compounds must be identified by their Geneva names when first used in the text. Active ingredients of all formulations should be likewise identified.

4. For chemical nomenclature, the conventions of the International Union of Pure and Applied Chemistry and the official recommendations of the IUPAC IUB Combined Commission on Biochemical Nomenclature should be followed.

Accession numbers

Accession numbers are unique identifiers in bioinformatics allocated to nucleotide and protein sequences to allow tracking of different versions of that sequence record and the associated sequence in a data repository [e.g., databases at the National Center for Biotechnological Information (NCBI) at the National Library of Medicine ('GenBank') and the Worldwide Protein Data Bank]. There are different types of accession numbers in use based on the type of sequence cited, each of which uses a different coding. Authors should explicitly mention the type of accession number together with the actual number, bearing in mind that an error in a letter or number can result in a dead link in the online version of the article. Please use the following format:

accession number type ID: xxxx (e.g., MMDB ID: 12345; PDB ID: 1TUP). Note that in the final version of the electronic copy, accession numbers will be linked to the appropriate database, enabling readers to go directly to that source from the article.

DNA sequences and GenBank Accession numbers. Many Elsevier journals cite "gene accession numbers" in their running text and footnotes. Gene accession numbers refer to genes or DNA sequences about which further information can be found in the databases at the National Center for
Biotechnical Information (NCBI) at the National Library of Medicine. Authors are encouraged to check accession numbers used very carefully. **An error in a letter or number can result in a dead link.** Note that in the final version of the electronic copy, the accession number text will be linked to the appropriate source in the NCBI databases enabling readers to go directly to that source from the article.

Example 1: "GenBank accession nos. **AI631510, AI631511, AI632198, and BF223228**, a B-cell tumour from a chronic lymphatic leukaemia (GenBank accession no. **BE675048**), and a T-cell lymphoma (GenBank accession no. **AA361117**)."

Authors are encouraged to check accession numbers used very carefully. An error in a letter or number can result in a dead link. In the final version of the printed article, the accession number text will not appear bold or underlined (see Example 2 below).

Example 2: "GenBank accession nos. **AI631510, AI631511, AI632198, and BF223228**, a B-cell tumour from a chronic lymphatic leukaemia (GenBank accession no. **BE675048**), and a T-cell lymphoma (GenBank accession no. **AA361117**)."

In the final version of the electronic copy, the accession number text will be linked to the appropriate source in the NCBI databases enabling readers to go directly to that source from the article (see Example 3 below).

Example 3: "GenBank accession nos. **AI631510, AI631511, AI632198, and BF223228**, a B-cell tumour from a chronic lymphatic leukaemia (GenBank accession no. **BE675048**), and a T-cell lymphoma (GenBank accession no. **AA361117**)."

Math formulae

Present simple formulae in the line of normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text).

Give the meaning of all symbols immediately after the equation in which they are first used. In chemical formulae, valence of ions should be given as, e.g., Ca$^{2+}$ and not Ca$^{++}$. Isotope numbers should precede the symbols, e.g., 18O. The repeated writing of chemical formulae in the text is to be avoided where reasonably possible; instead, the name of the compound should be given in full. Exceptions may be made in the case of a very long name occurring very frequently or in the case of a compound being described as the end product of a gravimetric determination (e.g., phosphate as P_2O_5).
Footnotes

Footnotes should be used sparingly. Number them consecutively throughout the article, using superscript Arabic numbers. Many word processors build footnotes into the text, and this feature may be used. Should this not be the case, indicate the position of footnotes in the text and present the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list.

Table footnotes

Indicate each footnote in a table with a superscript lowercase letter.

Artwork

Electronic artwork

General points

• Make sure you use uniform lettering and sizing of your original artwork.
• Save text in illustrations as "graphics" or enclose the font.
• Only use the following fonts in your illustrations: Arial, Courier, Times, Symbol.
• Number the illustrations according to their sequence in the text.
• Use a logical naming convention for your artwork files.
• Provide captions to illustrations separately.
• Produce images near to the desired size of the printed version.
• Submit each figure as a separate file.

A detailed guide on electronic artwork is available on our website: http://www.elsevier.com/artworkinstructions

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats

Regardless of the application used, when your electronic artwork is finalised, please "save as" or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):

EPS: Vector drawings. Embed the font or save the text as "graphics".
TIFF: Colour or greyscale photographs (halftones): always use a minimum of 300 dpi.
TIFF: Bitmapped line drawings: use a minimum of 1000 dpi.
TIFF: Combinations bitmapped line/half-tone (colour or greyscale): a minimum of 500 dpi is required.
DOC, XLS or PPT: If your electronic artwork is created in any of these Microsoft Office applications please supply "as is".

Please do not:

• Supply embedded graphics in your word processor (spreadsheet, presentation) document;
• Supply files that are optimised for screen use (like GIF, BMP, PICT, WPG);
• Supply files that are too low in resolution;
• Submit graphics that are disproportionately large for the content.
Colour artwork
Please make sure that artwork files are in an acceptable format (TIFF, EPS or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable colour figures then Elsevier will ensure, at no additional charge, that these figures will appear in colour on the Web (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in colour in the printed version. For colour reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for colour in print or on the Web only. For further information on the preparation of electronic artwork, please see http://www.elsevier.com/artworkinstructions. Please note: Because of technical complications which can arise by converting colour figures to "gray scale" (for the printed version should you not opt for colour in print) please submit in addition usable black and white versions of all the colour illustrations.

Figure captions
Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Text graphics
Present incidental graphics not suitable for mention as figures, plates or schemes at the end of the article and number them "Graphic 1", etc. Their precise position in the text can then be indicated. See further under Electronic artwork. Ensure that high-resolution graphics files are provided, even if the graphic appears as part of your normal word processed text file.

Tables
Number tables consecutively in accordance with their appearance in the text. Place footnotes to tables below the table body and indicate them with superscript lowercase letters. Avoid vertical rules. Be sparing in the use of tables and ensure that the data presented in tables do not duplicate results described elsewhere in the article.

References
Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either "Unpublished results" or "Personal communication" Citation of a reference as "in press" implies that the item has been accepted for publication.
Web references
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

References in a special issue
Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference management software
This journal has standard templates available in key reference management packages EndNote (http://www.endnote.com/support/enstyles.asp) and Reference Manager (http://refman.com/support/rmstyles.asp). Using plug-ins to word-processing packages, authors only need to select the appropriate journal template when preparing their article and the list of references and citations to these will be formatted according to the journal style which is described below.

Reference style

Text: All citations in the text should refer to:

1. Single author: the author’s name (without initials, unless there is ambiguity) and the year of publication;
2. Two authors: both authors' names and the year of publication;
3. Three or more authors: first author’s name followed by "et al." and the year of publication.

Citations may be made directly (or parenthetically). Groups of references should be listed first alphabetically, then chronologically.

Examples: "as demonstrated (Allan, 1996a, 1996b, 1999; Allan and Jones, 1995). Kramer et al. (2000) have recently shown".

List: References should be arranged first alphabetically and then further sorted chronologically if necessary. More than one reference from the same author(s) in the same year must be identified by the letters "a", "b", "c", etc., placed after the year of publication.

Examples:

Reference to a journal publication:

Reference to a book:

Reference to a chapter in an edited book:
Define abbreviations that are not standard in this field at their first occurrence in the article: in the abstract but also in the main text after it. Ensure consistency of abbreviations throughout the article.

Video data

Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labelled so that they directly relate to the video file’s content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a maximum size of 10 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages at http://www.elsevier.com/artworkinstructions.

Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

Supplementary data

Elsevier accepts electronic supplementary material to support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, high-resolution images, background datasets, sound clips and more. Supplementary files supplied will be published online alongside the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. In order to ensure that your submitted material is directly usable, please provide the data in one of our recommended file formats. Authors should submit the material in electronic format together with the article and supply a concise and descriptive caption for each file. For more detailed instructions please visit our artwork instruction pages at http://www.elsevier.com/artworkinstructions.

Submission checklist

It is hoped that this list will be useful during the final checking of an article prior to sending it to the journal's Editor for review. Please consult this Guide for Authors for further details of any item.

Ensure that the following items are present:

One Author designated as corresponding Author:

• E-mail address
• Full postal address
• Telephone and fax numbers
All necessary files have been uploaded
• Keywords
• All figure captions
• All tables (including title, description, footnotes)
Further considerations
• Manuscript has been "spellchecked" and "grammar-checked"
• References are in the correct format for this journal
• All references mentioned in the Reference list are cited in the text, and vice versa
• Permission has been obtained for use of copyrighted material from other sources (including the Web)
• Colour figures are clearly marked as being intended for colour reproduction on the Web (free of charge) and in print or to be reproduced in colour on the Web (free of charge) and in black-and-white in print
• If only colour on the Web is required, black and white versions of the figures are also supplied for printing purposes
For any further information please visit our customer support site at http://support.elsevier.com.

After Acceptance

Use of the Digital Object Identifier

The Digital Object Identifier (DOI) may be used to cite and link to electronic documents. The DOI consists of a unique alpha-numeric character string which is assigned to a document by the publisher upon the initial electronic publication. The assigned DOI never changes. Therefore, it is an ideal medium for citing a document, particularly 'Articles in press' because they have not yet received their full bibliographic information. The correct format for citing a DOI is shown as follows (example taken from a document in the journal Physics Letters B):
When you use the DOI to create URL hyperlinks to documents on the web, they are guaranteed never to change.

Proofs

One set of page proofs (as PDF files) will be sent by e-mail to the corresponding author (if we do not have an e-mail address then paper proofs will be sent by post) or, a link will be provided in the e-mail so that authors can download the files themselves. Elsevier now provides authors with PDF proofs which can be annotated; for this you will need to download Adobe Reader version 7 (or higher) available free from http://www.adobe.com/products/acrobat/readstep2.html. Instructions on how to annotate PDF files will accompany the proofs (also given online). The exact system requirements are given at the Adobe site:
If you do not wish to use the PDF annotations function, you may list the
corrections (including replies to the Query Form) and return them to Elsevier in an e-mail. Please list your corrections quoting line number. If, for any reason, this is not possible, then mark the corrections and any other comments (including replies to the Query Form) on a printout of your proof and return by fax, or scan the pages and e-mail, or by post. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. We will do everything possible to get your article published quickly and accurately. Therefore, it is important to ensure that all of your corrections are sent back to us in one communication: please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility. Note that Elsevier may proceed with the publication of your article if no response is received.

Offprints

The corresponding author, at no cost, will be provided with a PDF file of the article via e-mail. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. The PDF file is a watermarked version of the published article and includes a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of use.

Author Enquiries

For inquiries relating to the submission of articles (including electronic submission where available) please visit this journal’s homepage. You can track accepted articles at http://www.elsevier.com/trackarticle and set up e-mail alerts to inform you of when an article’s status has changed. Also accessible from here is information on copyright, frequently asked questions and more. Contact details for questions arising after acceptance of an article, especially those relating to proofs, will be provided by the publisher.